Name: \qquad

1. A thermodynamic system is taken from an initial state \boldsymbol{X} along the path $X Y Z X$ as shown in the PV-diagram to the right.
a. For the process $X \rightarrow Y, \Delta U$ is greater than zero and
a) $Q<0$ and $W=0$
b) $Q<0$ and $W>0$
c) $Q>0$ and $W<0$
d) $Q>0$ and $W=0$
e) $Q>0$ and $W>0$

b. For the process $Y \rightarrow Z, Q$ is greater than zero and
a) $W<0$ and $\Delta U=0$
b) $W=0$ and $\Delta U<0$
c) $W=0$ and $\Delta U>0$
d) $W>0$ and $\Delta U=0$
e) $W>0$ and $\Delta U>0$
2. A piece of metal with a mass of 1.20 kilograms, specific heat of $390 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}$, and initial temperature of $87^{\circ} \mathrm{C}$ is dropped into an insulated jar that contains 4.5 kg of water at $20.0^{\circ} \mathrm{C}$. The metal is removed after 12 seconds, at which time its temperature is $35^{\circ} \mathrm{C}$. Neglect any effects of heat transfer to the air or to the insulated jar. What is the temperature of the liquid after the metal is removed?
3. A steam engine operates on a warm $28.0^{\circ} \mathrm{C}$ day. If the ideal efficiency for this engine is 24%, what is the high temperature for the engine?
4. What is the average velocity of the particles of nitrogen at $22.0^{\circ} \mathrm{C}$?
5. A gas undergoes a thermodynamic expansion process as shown. Process $\boldsymbol{a b}$ represents the output work, process bc represents input work, all three processes involve heat transfer. (a) what is the work accomplished along path ca? (b) What is the work along path $\boldsymbol{a b}$, (c) What is the work along path bc? (d) What is the net work for the entire thermo cycle?

6. A heat engine makes use of 785 kJ of heat to produce 245 kJ of work. It operates at a temperature of $285^{\circ} \mathrm{C}$. It exhausts heat to the $22.5^{\circ} \mathrm{C}$ atmosphere. What is (a) its ideal efficiency and (b) its actual efficiency? (c) Why are these two quantities so different?
7. A circuit exists as shown below - the three resistors are immersed in a tank of water. The battery is connected to the resistors for 12.0 min . (a) How much heat is generated in the 12.0 min ? (b) The water in the tank has a mass of 1.25 kg and a beginning temperature of $24.0^{\circ} \mathrm{C}$, so what is the final temperature of the water if all the heat goes into it?

